Tag Archives: Medicare

Why Wireless Health Matters

By Robert B. McCray, Co-Founder, President and CEO of the Wireless-Life Sciences Alliance (WLSA)

THE potential of wireless health will be realized in the effective blending of three bodies of learning: high technology; life sciences; and human factors. The last point is critical — end users (including consumers, patients and clinicians) will ultimately determine the successes and failures in wireless health.

Robert McCray

There is also a fourth factor in the creation of any convergence sector such as internet commerce, mobile data or digital music. The fourth factor is the ecosystem of innovators, executives, investors, clinicians (for healthcare) and policy makers who are creating the sector.

The following discussion is intended to level set the discussion about why wireless health is important, to provoke conversation, and undoubtedly to set myself up for some predictive failures.

What is wrong with healthcare and what does wireless health have to offer?

Societies have no choice but to change their healthcare systems in the face of exploding demand caused by aging and chronic disease. The U.S. healthcare system is already failing millions of its citizens. Wireless health offers the opportunity to satisfy this demand, thus improving life and creating shareholder value.

Nonetheless, it is apparent that some institutions and professions will resist the demand for more personalized and efficient access to care. In the face of competition and digital information, however, they will ultimately be unable to resist disruptive change any better than the automobile, music or retail industries.

Wireless health is powerful because it creates transparency in healthcare through measurable outcomes, and transparency creates accountability.

What can be done

Looking at developments in the field as a whole, and considering the global economic and social environment in which we exist, I offer the following conclusions and observations:

  • If a device or service can be connected, it should be (under penalty of malpractice, obsolescence and/or customer dissatisfaction).  How else will you be able to answer questions about how your product works in the field or why someone should buy it? If you do not take this approach and your competitor does, how will you sell against connectivity? This is why we have Merlin, CareLink and Latitude even though St. Jude, Medtronic and Boston Scientific created these wireless services without extra reimbursement.
  • In the developing world, increases in chronic disease and demand for access to health services rival or exceed our challenges in the developed world. U.S. life sciences companies should look for markets in the entire world and not just in the dwindling populations of rich and well insured in the U.S. and Europe. Five billion cell phone users constitute the largest distribution channel ever created in the world. How are you going to use it?
  • Epocrates was founded on the principal that clinicians needed on-the-fly access to accurate and up to date information via mobile devices and it has grown to establish a platform serving a majority of U.S. practitioners with several important services. It has achieved business success and its investors and founders will be rewarded. Whether Epocrates will extend this platform to the rest of the world or leave that opportunity to others remains to be seen.
  •   is moving towards free. Access to medical knowledge, including personal genomics, is being distributed directly to consumers. So far, these trends have primarily influenced a motivated minority of consumers and especially the healthy wealthy, but over time they will shift power and responsibility to patients who will have to manage more healthcare decisions for themselves and their families. Digital music ultimately reshaped the music industry. Wireless health will have a similar impact in healthcare.
  • In societies with limited access to healthcare and limited spending, wireless health delivers access to knowledge and care.  In the U.S., it is disruptive and resisted. Why? Partially because the U.S. spends too much and gets too small a return compared with the rest of the world. There is resistance to change because it is economically, culturally and legally disruptive.

Consider the combined effects of the following:

  • Professional licensure is well intended but state licensure and corporate practice restrictions shield physicians from competition.
  • The FDA operates on a laudable principle that safety and efficacy must be demonstrated, but this standard should be relaxed if the new device or service is offering a monitoring of dark space where current services leave patients unmonitored.
  • The fee for service system has created an environment where innovation depends on reimbursement which, in conjunction with device regulation, tends to freeze the innovation and impede its improvement.
  • Notwithstanding these sources of inertia, the immutable forces of population aging, rising rates of chronic disease, and the effects of global competition, mean that (1) individuals will have increasing personal responsibility for coordinating their own and their family’s care and (2) access to fully insured care will continue to decrease. These trends turn “patients” into “consumers” and “caregivers” who demand better products and services than the healthcare industry is accustomed to delivering.

Fortunately, we have the technology tools to tackle these problems:

  • Nearly ubiquitous wireless connectivity to the world’s population. Cell phones are a mobile and personal permanent address.
  • Data storage, analytics and search capabilities that are declining in cost faster than the declining cost of content creation.
  • Secure cloud based access to information via the Internet.
  • Embedded wireless technology which enables wearable devices.
  • Inexpensive whole genome sequencing and rapidly advancing esoteric diagnostic services, with results reported in a digital format to enable data sharing and analysis.

The Future of Healthcare

What will we do with these tools?  What is the future of the healthcare industry in the United States, the world’s most expensive healthcare market?

  • Will it follow the trajectory of the music industry, which was controlled by a small number of companies until digital music and the Internet made access to music free, enabled free global distribution for artists, and transformed how music lovers spend their money.
  • Will it follow the course of the auto industry which tried to maintain a market for low tech low quality cars, lost its status to international companies and now has downsized, created competitive products and is regaining market share.
  • Unfortunately, elements of the U.S. healthcare industry may have more in common with the financial industry, especially its lack of transparency, high cost and government support.

In a sense, the U.S. has run the largest clinical effectiveness study in history with the Medicare program: approximately 50,000,000 patients have participated over 30 years. The U.S. is ranked last among 19 industrialized nations with respect to preventable deaths, despite outspending these nations as much as twofold (Commonwealth Fund, 2008).

The purpose of Medicare is to operate an effective health insurance program for the aged – notwithstanding clear evidence of its failure relative to the world, elements of the professions, key institutions, and consumers (as voters) resist thoughtful efforts at Medicare’s improvement. Fortunately, this problem has the attention of policy makers, entrepreneurs and some globally significant companies.

How fast will the U.S. change? How do businesses thrive and investors earn a return in the face of uncertainty? There is no guide book for this situation, but with healthcare being the largest component of the U.S. economy and with the development of middle class healthcare markets in Asia, it is certainly an area that is replete with opportunity.

Excerpted from Why Wireless Health Matters By Robert B. McCray

Advertisements

Diabetes Management: Analysis Shows Value of Structured Exercise Programs

Insurance Benefits for Exercise Programs Can Cut Health Costs

 ——————————————

FOR the person with type 2 diabetes, or the high-risk individual who is trying to prevent the development of diabetes, there is an enormous body of research literature documenting the benefits of exercise. Indeed, research shows that just six weeks of exercise is enough to change both brain chemistry and body chemistry for the better; diets alone don’t have the same effect. But some questions still remain ‒ how much exercise is needed, and what kind?

A host of studies have linked exercise programs with improved health measures related to blood pressure, lipid levels — including cholesterol and triglycerides — cardiovascular events, cognition, physical performance, premature death and quality of life. Analyses of interventions to promote physical exercise in adults have found that compared with no intervention, exercise programs are cost-effective and have the potential to improve survival rates and health-related quality of life.

A recent systematic review and meta-analysis ‒ undertaken by scientists led by Daniel Umpierre of the Hospital de Clinica de Porto Alegre in Brazil ‒ compares the association between physical activity advice and structured exercise programs, respectively, and markers of diabetes.  It reveals that implementing structured exercise training — including aerobic, resistance or both — is associated with a greater reduction in HbA1c levels for patients with diabetes compared to patients in control groups. Results of the study are published in the May 4 issue of the Journal of the American Medical Association (JAMA).

A structured exercise is a task, activity, or question posed by a leader that pushes everyone to reflect, focus, offer ideas and insights, and become engaged in learning. Structured exercises offer group leaders a variety of options for encouraging group participation and discussion, practicing skills, and involving adults who have a range of learning styles and capabilities.

After analyzing the results of 47 randomized clinical trials, the researchers also found that exercising for longer periods of time was better at bringing blood sugar levels down than exercising more intensively. Longer weekly exercise duration was also associated with a greater decrease in these levels, according to results of the analysis of previous studies.

The meta-analysis shows that greatest reductions in HbA1c occurred in patients exercising for more than 150 minutes in total per week. Exercise intensity did not appear to matter. Exercising a minimum of 150 minutes a week (usually broken down to 30 minutes of exercise five days a week) is recommended by such institutions as the American College of Sports Medicine.

“People with type 2 diabetes should engage in regular exercise training, preferentially supervised exercise training,” says Beatriz Schaan, the study’s senior author. “If these patients can perform training for more than 150 minutes per week, this would be more beneficial concerning their glucose control. However, if they cannot reach this amount of weekly exercise, lower exercise amounts are also beneficial.”

The Importance of Exercise in Diabetes Management

A recent joint statement from the American Diabetes Association (ADA) and the American College of Sports Medicine (ACSM) has already underscored the importance of physical exercise to prevent and manage insulin resistance, type 2 diabetes mellitus, gestational diabetes mellitus, and the complications of diabetes.

“Current guidelines recommend that patients with type 2 diabetes should perform at least 150 minutes per week of moderate-intensity aerobic exercise and should perform resistance exercise three times per week,” the authors of the Brazil study wrote. “Regular exercise improves glucose control in diabetes, but the association of different exercise training interventions on glucose control is unclear.”

Indeed, although some clinical trial evidence suggests that aerobic exercise and resistance training can each improve glucose control in patients with type 2 diabetes mellitus, not all clinical trials are consistent with regard to this finding.

However, differences in results of clinical trials about the ability of aerobic exercise and resistance training to improve glucose control are primarily due to differences in trial design, including modality, intensity, exercise program duration, adherence to the programs, sample size, and patient populations.

In the Brazilian study, the authors analyzed 47 randomized controlled trials (RCTs) into the effect of exercise on HbA1c, with a total of 8538 patients. In 23 of these RCTs, patients took part in structured exercise training, and in the other 24 they were simply given advice on physical activity.

Across all studies analyzed, engaging in structured exercise was associated with decreased HbA1c levels compared with controls, whether this was structured resistance training (fall in HbA1c of 0.57%), structured aerobic exercise (fall of 0.75%), or a combination of both (0.51% fall).

A longer total time spent in structured exercise was associated with better glycemic control. If total weekly time in structured exercise exceeded 150 minutes, the average drop in HbA1c was 0.89%, against 0.36% for a time of 150 minutes or less.

Physical activity advice was only associated with a decline in HbA1c if it was combined with dietary advice.

The authors said: “This systematic review and meta-analysis of RCTs demonstrates important findings regarding the prescription of structured exercise training. First, aerobic, resistance, and combined training are each associated with HbA1c decreases, and the magnitude of this reduction is similar across the three exercise modalities.

“Second … structured exercise of more than 150 minutes per week is associated with greater declines in HbA1c than structured exercise of 150 minutes or less per week in patients with type 2 diabetes. This finding is important because the current guideline-recommended exercise duration is at least 150 minutes per week.

They added: “Although high-intensity exercise has been previously shown to have an association with HbA1c reduction, our findings did not demonstrate that more intensive exercise was associated with greater declines in HbA1c.”

In an accompanying editorial, Marco Pahor, director of the University of Florida Institute on Aging, argues that “the meta-analysis … and cumulative evidence from a large number of randomized controlled trials conducted over the past few decades in the area of physical activity and exercise provide solid evidence for public policy makers to consider structured exercise and physical activity programs as worthy of insurance reimbursement to promote health, especially in high-risk populations.”

Insurance Benefits for Exercise Programs Can Cut Health Costs

With respect to type 2 diabetes, Medicare reimburses for approved self-management education and medical nutrition therapy programs. But no specific reimbursement is given for any physical activity or exercise program, despite evidence that such programs can help improve health and cut costs.

Questions remain as to what format reimbursable exercise and physical activity programs should take, what population group should be targeted, and at what stage of life or health status would a lifestyle intervention be most cost-effective to implement.

Some insurance providers already include a fitness benefit for members, such as monthly membership at certain fitness centers or access to personal trainers or exercise classes at reduced cost. Indeed, use of such health plan-sponsored club benefits by older adults has been linked to slower increases in total health care costs.

In one study, older adults who visited a health club two or more times a week over two years incurred $1,252 less in health-care costs in the second year than those who visited a health club less than once a week. Programs among people with lower incomes can also pay off, because people in that group are otherwise more likely to forego health-promoting physical activity because of economic constraints or safety concerns.

“People are willing to invest in improved health, but if you have a fixed amount of resources then you want to choose where you get the most health for the dollar,” said Erik Groessl, an assistant professor of family and preventive medicine at the University of California, San Diego, and director of the UCSD Health Services Research Center. Groessl was not involved in the current analysis.

Group training or walking programs, for example, can be cost-effective, sustainable forms of physical activity that don’t require expensive health care professionals or equipment. But more costly interventions that yield dramatic results might also be worth the expense.

“There is a lot of evidence that physical activity works, and I think it’s time to start putting it into practice more widely,” Groessl said.

Sources: JAMA, University of Florida News, Medpage Today

%d bloggers like this: